Дадим краткое описание структурной схемы процессора, представленной на рисунке 1.
Вычислительные блоки.
Вычислительные блоки процессора ЦОС - арифметико-логическое устройство (АЛУ), умножитель/аккумулятор (умножитель) и устройство сдвига выполняют численную обработку для алгоритмов ЦОС. Эти блоки получают данные из регистров в регистровом файле данных. Команды для этих блоков обеспечивают операции над числами в формате с фиксированной запятой. Каждый из блоков выполняет команду за один цикл.
Вычислительные блоки выполняют различные типы операций.
Арифметико-логические устройства.
АЛУ осуществляет арифметические и логические операции над данными в формате с фиксированной точкой. Команды АЛУ с ФТ оперируют с 16-ти разрядными данными в формате ФТ и выдают 16-ти разрядный результаты с ФТ. Команды АЛУ включают:
Сложение и вычитание с ФТ
ФТ сложение с переносом, вычитание с займом, инкремент, декремент
Логические команды И, ИЛИ, Исключающее ИЛИ, НЕ
Функции Abs, Pass, примитивы деления
Умножитель.
Умножитель выполняет ФТ-операции умножение и умножение с накоплением. Умножение с накоплением возможно в вариантах умножения с накопительным сложением и умножения с накопительным вычитанием
. Команды умножителя с ФТ оперируют с 16-ти разрядными ФТ операндами и вырабатывает 40-ка разрядные результаты. Входные данные обработаны как целые и как дробные числа, как числа без знака или как попарно-комплементарные числа со знаком. Команды умножителя включают:
Умножение
Умножение с накоплением, дополнительно возможно округление
Округление, насыщение или очистка регистра результата
Устройство сдвига.
Устройство сдвига обеспечивает функции поразрядного сдвига 16-ти разрядных входных данных, выдавая 40 разрядные числа на выход. Эти функции включают:
Арифметический сдвиг (Ashift)
Логический сдвиг (Lshift)
Нормализацию (Norm)
Получение экспоненты (Exp)
Получение общей экспоненты для полного блока чисел (Expadj)
Рисунок 2 - Вычислительный блок
Пути для потока данных через вычислительные блоки проходят параллельно (рисунок 2). Выход любого вычислительного блока может служить входом для любого вычислительного блока в следующем цикле. Пересылка данных в вычислительные блоки и из них производится через регистровый файл данных. Регистровый файл состоит из 16 первичных и 16 второстепенных регистров, первичные можно рассматривать как основные, а второстепенные - как запасные. Регистровый файл соединяется с шинами данных ПП и ПД, обеспечивая передачу данных между вычислительными блоками и памятью.
На рисунке 2 показано, что безусловные команды умножителя, АЛУ и устройства сдвига, состоящие из одной операции, имеют неограниченный
доступ к регистрам данных в регистровом файле. Шина Результата позволяет вычислительным блокам использовать любой регистр результата (MR2, MR1, MR0, SR1, SR0 или AR) как операнд X для любой операции. Верхняя часть регистра результата устройства сдвига (SR - Shifter Result), SR2, не может служить в качестве обратной связи через шину результата.
Регистры MR2 и SR2 отличаются от других регистров результата. При использовании их в качестве регистров в составе регистрового файла, регистры MR2 и SR2 являются 16-ти разрядными регистрами, которые могут быть использованы как операнды Х или Y для команд умножителя, АЛУ или устройства сдвига. При использовании в качестве регистров результата (как часть MR или SR), только 8 младших разрядов регистров MR2 и SR2 содержат данные (старшие 8 используются как расширение для знака). Эта разница (16 разрядов как входной регистр, 8 разрядов - как выходной) влияет на то, как программный код может использовать регистры MR2 и SR2. Расширение для знака показано на рисунке 3.
С помощью команд пересылки, регистры данных могут загружать регистры Блока Устройства Сдвига (Shifter Block - SB) и Экспоненты Устройства Сдвига (Shifter Exponent - SE) (или быть загруженными из этих регистров), но регистры SB и SE не могут быть использованы как операнды X и Y вычислительных устройств. Регистры SB и SE служат дополнительными входными регистрами для устройства сдвига.
Расчет установившихся режимов линейных электрических цепей
Данная работа представляет собой обобщение работы, проведенной за время
обучения теоретических основ электротехники. Фактически всю работу можно
разделить н ...
Расчет усилителя постоянного тока
электромагнитная головка
тип - ГЗМ-105
Диапазон частот - 31,5 - 18 кГц
Величина выходного напряжения (на НЧ) - 0,7 мВ
Величина выходног ...
Cинтез инвертирующего усилителя
Операционные усилители в настоящее время находят широкое применение при
разработке различных аналоговых и импульсных электронных устройств. Это связано
с те ...