Разделы сайта

Исследование заданной системы на устойчивость двумя критериями

Под устойчивостью подразумевается способность системы возвращаться в исходное или близкое к нему состояние, после снятия внешнего воздействия с системы.

а) Критерий Гурвица

Критерий Гурвица относится к алгебраическим критериям устойчивости. Алгебраические критерии устойчивости позволяют определить устойчивость системы по коэффициентам характеристического уравнения.

Для устойчивости линейной САУ необходимо и достаточно, чтобы определитель Гурвица и все его главные диагональные миноры были положительными.

Правило составления определителя Гурвица: по главной диагонали записывается в порядке возрастания индекса коэффициенты характеристического уравнения начиная с а вниз от главной диагонали записываются коэффициенты с убывающим индексом, вверх с возрастающим, недостающие заполняются нулями.

Для определения характеристического уравнения нужно получить передаточную функцию замкнутой системы.

Рис.1 Структурная схема заданной САУ

Сначала определим передаточную функцию разомкнутой системы. Для получения замкнутой функции по управляющему воздействию, возмущающее воздействие приравнивается к нулю (F(p)=0).

Для получения передаточной функции разомкнутой системы размыкается главная обратная связь и точка разрыва считается входом и выходом системы. Затем преобразуем структурную схему САУ.

После преобразований у нас осталось одно звено с передаточной функцией

Рис.2 Преобразованная САУ в разомкнутом состоянии

После подстановки значений коэффициентов получим

Теперь мы можем определить передаточную функцию по управляющему воздействию в замкнутом состоянии.

Восстановим главную обратную связь

Рис.3 Преобразованная САУ в замкнутом состоянии

Так как это единичная обратная связь, то для нахождения передаточной функции по управляющему воздействию в замкнутом состоянии воспользуемся формулой:

Получаем

Запишем характеристическое уравнение САУ в замкнутом состоянии.

Для нахождения характеристического уравнения САУ в замкнутом состоянии приравняем к нулю знаменатель передаточной функции замкнутой системы, получим:

Зная характеристическое уравнение, мы можем составить определитель Гурвица и его главные диагональные миноры.

Условия устойчивости Критерия Гурвица не выполняются (для устойчивости линейной САУ необходимо и достаточно, чтобы определитель Гурвица и все его главные диагональные миноры были положительными), следовательно, данная САУ не является устойчивой.

б) Критерий Найквиста (в логарифмических координатах).

Перейти на страницу: 1 2 3 4

Интересное из раздела

Калибровка мониторов на основе науки о цвете – колориметрии
Полиграфическая индустрия активно развивается и предлагает клиентам все больше новых и интересных решений. Также растет требовательность заказчиков к резуль ...

Исследование и расчет цепей синусоидального тока
Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону: , где - максимальное значение или амплитуда ...

Расчет токовой защиты нулевой последовательности
Задание и исходные данные Произвести расчет дистанционной защиты линии и начертить карту селективности дистанционных защит. Исходные данные: ...