Разделы сайта

Разработка математической модели цифрового сигнала

Для разработки математической модели цифрового сигнала примем четыре кодовых слова (коды четырех отсчетов).

Числовые константы сигнала определяются по формулам (2.8) и (2.9). Математическое ожидание:

. (2.8)

Дисперсия:

. (2.9)

Выбранная кодовая последовательность:

Вероятность нуля:

Вероятность единицы:

Рассчитаем математическое ожидание сигнала по (2.8).

В.

Рассчитаем дисперсию:

В.

Рассчитаем функцию автокорреляции. При проведении расчетов воспользуемся возможностями программы MathCAD. Поступим следующим образом. Выпишем четыре последовательности кодов, которыми представляется дискретизированный сигнал; это будет последовательность нулей и единиц.

В среде MathCAD. создадим два вектора и . Далее воспользуемся функцией . После каждого измерения будем сдвигать кодовую последовательность вектора Vy на один знак. Проведём семь расчётов. Результаты занесём в табл. 2.2.

Таблица 2.2 Функция автокорреляции кодового сигнала

t, мкс

0

50

100

150

200

250

300

350

Corr

1

-0.066667

-0.066667

-0.244444

-0.244444

0.111111

-0.244444

0.288889

В среде MathCAD по этой таблице сформируем два вектора Vt и Vk:

С помощью функции cspline(Vt, Vk) вычислим вектор VS вторых производных при приближении к кубическому полиному:

VS : = cspline (Vt, Vk)

Далее вычисляем функцию, аппроксимирующую функцию автокорреляции сплайн кубическим полиномом:

kor(t) : = interp (VS, Vt, Vk, t).

График функции автокорреляции изображен на рис. 2.2.

Спектральные характеристики кодированного сигнала находятся на основании интегрального преобразования Винера-Хинчина. В области действительной переменной оно имеет следующий вид:

. (2.10)

Здесь K(t) выше рассчитанная нормированная функция kor(t), верхний предел T - последнее рассчитанное значение t.

Решение интеграла произведём в среде MathCAD.

Спектр кодированного сигнала, построенный по (2.10) показан на рис. 2.3.

Интересное из раздела

Анализ алгоритмов цифровой обработки сигналов. Исследование корректирующих способностей циклических кодов
цифровой сигнал циклический код Цифровой фильтр - в электронике любой фильтр, обрабатывающий цифровой сигнал с целью выделения и/или подавления определённых частот этого ...

Проектирование генератора гармонических колебаний
Генераторы гармонических колебаний представляют собой электронные устройства, формирующие на своем выходе периодические гармонические колебания при отсутств ...

Шлюз ZigBee и GPRS
Беспроводные сенсорные сети получили большое развитие в последнее время. Такие сети, состоящие из множества миниатюрных узлов, оснащенных маломощным приемо- ...