Находим остальные коэффициенты:
;
;
;
;
;
;
;
.
Полином по степеням х находится по формуле, в которой аппроксимирующий полином в отличие от аппроксимируемой функции
обозначен как
:
,
где
- ортогональные полиномы. Группируя коэффициенты по степеням х и собирая подобные члены, приходим к удобным выражениям для вычисления членов А0, А1х, А2х2, А3х3 и т.д. этого полинома:
;
;
;
;
;
;
.
В итоге полином по степеням х:
;
Рассматриваемый полином удовлетворяет требованиям формулы:
= 0 и х = 0 ;
Подставляем в формулу
значение:
,
получаем истинный теоретический полином Во по степеням
:
.
По найденному уравнению вычисляем и заносим в нижнюю графу таблицы 2 значения В0 в контрольных точках напряжения смещения
.
Из сопоставления экспериментальных значений
и теоретических В0 рисунку 2 видим, что совпадение очень хорошее. Абсолютная ошибка находится в пределах сотых долей, что характеризует пригодность результатов аппроксимации для дальнейшего гармонического анализа различных нелинейных явлений.
Проектирование зеркальных антенн для индивидуального приема спутниковых программ
Наибольший интерес в настоящее время представляет прием
телевидения в диапазоне 11…12 ГГц, для которого наиболее применимы
параболические антенны, так как п ...
Использование специализированных микропроцессоров
Рассмотрим
преимущества цифровой обработки сигналов (ЦОС) на сравнении аналоговых и
цифровых фильтров. Цифровые фильтры всё чаще находят своё применение в м ...
Расчет линейной электрической цепи при гармоническом воздействии
Цель
курсовой работы состоит в практическом освоении методов расчета простых и
сложных электрических цепей при воздействии на них гармонических колебани ...