Рис. 38. Структура гироскопа с двумя рамками и торсионным подвесом
Рамки образуют два плоских подвижных элемента - внешний (1) и внутренний (2), соединенных между собой и с основанием с помощью торсионов 3 и 4, оси которых перпендикулярны друг другу. Для увеличения кинетического момента на внутреннем элементе расположена дополнительная масса 5, снизу между основанием и рамками нанесено несколько пар электродов, образующих возбуждающие емкости и емкостные датчики перемещений.
Наружному элементу 1 электрическим возбуждением сообщаются угловые колебания относительно оси Y. Эти колебания в той же плоскости через торсионы 3 передаются и на внутренний элемент. При вращении прибора со скоростью Ω относительно оси Z возникают силы Кориолиса, которые заставляют внутренний элемент поворачиваться относительно оси X. Это отклонение измеряется емкостным датчиком перемещений и несет информацию об угловой скорости Ω.
Такие гироскопы обеспечивают по оценкам, точности порядка (102÷103)о/час и выше.
На рис. 39 приведена конструктивная схема микрогироскопа, имеющего сразу две оси чувствительности.
Чувствительная масса здесь имеет форму кольца (2), имеет сложный симметричный упругий подвес (элементы 3-8). Подвижная часть гироскопа через втулку (1) закрепляется на корпусе прибора (крепление «центральное»). Очевидно, что такой гироскоп сложен и конструктивно и в изготовлении.
Кольцо возбуждается по схеме «вибрационное вращение» с помощью электростатического привода гребенчатой структуры (11). Измеряется вращение относительно оси Z. Измерение перемещений чувствительного элемента осуществляется в двух плоскостях с помощью емкостных датчиков (9) и (10), расположенных на осях X и Y.
Рис. 39. Двухосевой микрогироскоп:
- центральная втулка; 2 - кольцо (инертная масса); 3-8 - элементы упругого подвеса; 9,10 - емкостные датчики перемещения; 11 - привод гребенчатой структуры.
Становится популярной схема очень простого по конструкции стержневого гироскопа (рис. 40).
Рис. 40. Структура стержневого вибрационного гироскопа
Правда, его можно выполнить только с использованием пьезоэлектрических материалов.
Он состоит из стержня (2), вытравленного в корпусе (1) и пьезоэлементов (3,4,5,6), нанесенных на грани стержня (стержень может иметь в сечении и треугольное сечение - так делают японцы). С обеих сторон и длине стержень имеет шейки, на которых он и подвешен к корпусу. Пьезоэлементы (3-5) возбуждают в стержне колебания в плоскости YZ, каждый элемент стержня при этом получает скорость Vy. Если теперь вращать стержень вокруг оси Z со скоростью Ω, возникающие силы Кориолиса вызывают колебания стержня в плоскости XZ с линейными скоростями Vx каждого элемента. Для измерения этих колебаний служат пары пьезоэлементов (4-6).
Генератор цифровых тестовых сигналов
Ускорение научно-технического прогресса, развитие автоматизации процессов производства требует постоянного совершенствования систем сбора и переработки информации. Наибол ...
Проектирование двухполупериодного выпрямителя и Г-образного индуктивно-емкостного фильтра
Электроника
это наука, которая охватывает не только технику слабых токов, но технику
сильных токов, обычно относящихся к электротехнике, поскольку она опер ...
Анализ и синтез линейной системы автоматического управления
Анализ
системы автоматического управления
Исходные
данные:
Рассмотрим
структурную схему III
изображенную в табл. П-1.1.
Параметры
...