Для выбора оптимальной конструкции отражающего покрытия построим графики спектральных зависимостей R= f(л) для всех типов покрытий в единой системе координат.
Оптимальной будет та конструкция, которая обеспечивает максимальный коэффициент отражения на рабочей длине волны л0=600 нм и более широкую зону отражения в заданной области спектра.
Таким образом, оптимальным является 4-х слойное оптическое покрытие.
Обозначим выбранную конструкцию просветляющего покрытия:
- ВД Отраж. (110ИЭ 88 ИЭ) 250Ч2
л0 = 600 нм ±20 нм;
сmах = 0,42;
л1 - л2 = 400 - 800 нм.
Материал подложки: ЛК-1 ГОСТ 3514-94;
nс=1.441
Для данной конструкции отражающего покрытия составим технологический процесс.
Технологический процесс
Технологический процесс включает следующие основные операции:
Очистка подложек.
Подготовка вакуумной камеры.
Ионная очистка подложек.
Нагрев подложек до фиксированной температуры.
050 Нанесение оптических покрытий:
Нанесение оптического покрытия СаF2.
Нанесение оптического покрытия TiO2.
Нанесение оптического покрытия СаF2.
Нанесение оптического покрытия TiO2.
Разгерметизация вакуумной камеры, выгрузка готовых изделий.
Контроль оптических параметров покрытия.
Содержание операций:
010
- Очистка подложек: подложки из стекла ЛК-1 ГОСТ 3514 - 94 обезжиривают в смеси петролейного эфира и этилового спирта в соотношении 75% - 25% и окончательно протирают тампонами обезжиренной ваты, смоченной в абсолютном этиловом спирте. Очищенные детали протирают обезжиренными батистовыми салфетками. Готовые детали вставляют в съёмные оправы подложкодержателя и с поверхностей беличьей кисточкой удаляются ворсинки. Очищенные детали в оправах загружают в подложкодержатель, и подложкодержатель устанавливается в вакуумную камеру. При выполнении этой операции оператор должен работать в резиновых перчатках или напальчниках.
020
- Подготовка вакуумной камеры происходит параллельно с операцией 010:
S Очистка элементов подколпачной аппаратуры (экранов, испарителей, заслонов) от пленок испаряемых материалов и пропитку их спиртом.
S Загрузка исходных пленкообразующих материалов в испарители (TiO2, и CaF2 в 4х позиционный тигель электронно-лучевого испарителя).
S Загрузка подложкодержателя с очищенными оптическими деталями.
S Проверка работоспособности механизмов и устройств в вакуумной камере: вращение подложкодержателя, перемещение заслонок, работа фотометра.
S Откачка камеры до давления примерно 2 Па.
030
- Операция ионной очистки подложек проводится в камере (р=2…1.38 Па) в течение 5-10 минут при напряжении 500 В на электроде ионной очистки и токе разряда 150 - 200 мА. При этом включается вращение подложкодержателя с частотой n = 10-20 мин -1. В процессе ионной очистки ионами остаточных газов с поверхности удаляются пылинки и молекулы тяжелых газов. По окончании ионной очистки камера откачивается до Р = 10 -2 - 10 -3 Па.
040
- Нагрев подложек до фиксированной температуры Тподл =2500С, происходит в высоком вакууме при одновременном вращении подложкодержателя. При этом с поверхности оптических деталей удаляются пары воды и молекулы легких газов. Время нагрева 5 - 15 минут.
050
- Нанесение оптического покрытия начинают после обезгаживания пленкообразующих материалов при закрытой заслонке. Для этого материал нагревают до температуры на 100 0С ниже, чем Тисп. В процессе прогрева давление вакуумной камеры повышается, а потом понижается до Р = 10-3 Па. Обезгаживание считается законченным, когда давление восстанавливается до первоначального значения. Далее включают фотометр, выводят нагреватель или ЭЛИ на режим испарения, открывают заслонку и проводят испарение материала, фиксируя параметры испарителя или ЭП. Контроль за нанесением испарителя ведут по фотометру. При нанесении просветляющих покрытий метод контроля на пропускание раздельный, так как m ≥3, и экстримальный.
051
- Нанесение оптического покрытия CaF2.
Режимы нанесения пленки:
ИЭ Р =10 -3 Па;
Тисп.= 1360° С;
Тпод =250° С
U = 6кВ;
Iн = 10-12 А;
Iэм = 20-60 мА.
052
- Нанесение оптического покрытия TiO2.
Режимы нанесения пленки:
ИЭ Р=10-3 Па;
Тисп = 1640° С;
Тпод =250° С;
U= 6кВ;
Iн = 10-12 А;эм = 20-60 мА.
053
Контроль параметров ошибок в трактах цифровых систем передачи
Основной
тенденцией развития телекоммуникаций во всем мире является цифровизация сетей
связи, предусматривающая построение сети на базе цифровых методов ...
Обзор современных систем спутниковой навигации
спутниковая навигационная глобальное позиционирование
На
сегодняшний день в мире существует несколько навигационных систем, использующих
искусственные спутни ...
Каналы утечки речевой информации и способы их закрытия
Для несанкционированного добывания информации в настоящее
время используется широкий арсенал технических средств, из которых
малогабаритные технические сред ...